Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae

نویسندگان

  • Paul C. Kirchberger
  • Daniel Unterweger
  • Daniele Provenzano
  • Stefan Pukatzki
  • Yan Boucher
چکیده

Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3' region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition

Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that tr...

متن کامل

Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Transloca...

متن کامل

Horizontal Gene Transfer of Functional Type VI Killing Genes by Natural Transformation

Horizontal gene transfer (HGT) can have profound effects on bacterial evolution by allowing individuals to rapidly acquire adaptive traits that shape their strategies for competition. One strategy for intermicrobial antagonism often used by Proteobacteria is the genetically encoded contact-dependent type VI secretion system (T6SS), a weapon used to kill heteroclonal neighbors by direct injectio...

متن کامل

Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae

The Vibrio cholerae type VI secretion system (T6SS) assembles as a molecular syringe that injects toxic protein effectors into both eukaryotic and prokaryotic cells. We previously reported that the V. cholerae O37 serogroup strain V52 maintains a constitutively active T6SS to kill other Gram-negative bacteria while being immune to attack by kin bacteria. The pandemic O1 El Tor V. cholerae strai...

متن کامل

Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains.

The most recently discovered secretion pathway in gram-negative bacteria, the type VI secretion system (T6SS), is present in many species and is considered important for the survival of non-O1 non-O139 Vibrio cholerae in aquatic environments. Until now, it was not known whether there is a functionally active T6SS in wild-type V. cholerae O1 strains, the cause of cholera disease in humans. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017